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Allopurinol Pretreatment Improves Evoked
Response Recovery Following Global Cerebral
Ischemia in Dogs

Richard B. Mink, MD; Andrew J. Dutka, MD; and John M. Hallenbeck, MD

The reperfusion of previously ischemic tissue may lead to the formation of highly reactive free
radicals that promote tissue injury. Xanthine oxidase has been implicated as one source of
these free radicals. We examined the role of xanthine oxidase in brain injurv using a
cerebrospina! fluid compression modei ol global cerebral ischemia with 15 minutes of ischemia
and 4 hours of reperfusion. Seven dogs were pretreated with the xanthine oxidase inhibitor
allopurinol (50 mg/kg for 5 days). Neurophysiological recovery was monitored with cortical
somatosensory evoked potentials. As an attempt to correlate brain recovery with the mechanism
of protection, free brain malondialdehyde was measured at the end of reperfusion by
high-performance liquid chromatography. Brain water content was measured by wet-dry
weights. Compared with seven untreated control dogs, allopurinol pretreatment significantly
improved recovery of somatosensory evoked potentials after 4 hours of reperfusion. However,
the amount of free malondialdehyde in the allopurinol-treated dogs was 32% greater than that
in the controls. Brain water content was similar in the two groups. These results suggest that
xanthine oxidase contributes to brain injury after ischemia and rcperfusion. However, tissue

damage caused by xanthine oxidase may be mediated through mechanisms other than free
radical production. (Stroke 1991;22:660-665)

91-11524
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tissue is essential to the rccovery of brain

function. However, reperfusion may para-
doxically lecad to the formation of highly reactive
oxygen free radicals that damage tissue.! Xanthine
oxidase (XQO), an enzyme that converts hypoxanthine
to xanthine and xanthine to uric acid, may be one
source of these free radicals. In normal brain, XO
exists mainly as the non—free radical gencrating
xanthinc dehydrogenase (XD),2 although a small
amouni of oxidase is found in the cerebral endothe-
lium.* During ischemia, XD may be converted to XO

r I Yhe reperfusion of previously ischemic cerebral
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which then generates free radicals during reperfu-
sion.#-* [rreversible XO is formed from proteolytic
cleavage of XD whereas sulfhydryt oxidation results
in the formation of reversible XQ.7#

If XO contributes to tissuc damage in cerebral
ischemia/reperfusion injury, then inhibiting the en-
zyme ‘hould improve cerebral recovery after isch-
emia and reperfusion. Furthermore, if XO causes
damage by generating free radicals, improved recovery
should be accompanied by lower levels of lipid peroxi-
dation, an index of free radical damage. We tested
these hypotheses in a canine model of global cerebral
ischemia after pretreatment with allopurinol, an inhib-
itor of both XD and XO.

Materials and Methods

The experimental protocol was reviewed by the
institutional animal care and use committee and
certified as conforming to the principles described in
the National Institutes of Health “Guide for the Care
and Use of Laboratory Animals” (Department of
Health and Human Services publication No. 86-23).
Details of this preparation have been published
previouslv.” Sixteen adu't male monorel dogs weigh
ing 11.3-13.2 kg were preanesthetized with 2 mg/kg
1.m. xylazinc and 0.05 mg/kg i.m. atropine and were
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maintained on intravenous a-chloralose (30 myg kg
initially, then 20 mg kg every 20 minutes). The dogs
were intubated and mechanically ventilated and re-
ceived 0.1 mg kg iv. pancuronium bromide cvery
hour for muscle relaxation. Intravenous and intru-
artertal femoral lines were placed for the administra-
tion of fluids and drugs, monitoring of blood pres-
sure. and sampling of blood for the measurement of
pH. Pao.. Paco-. and hematocerit. Rectal temperature
was maintained at 38.0x0.5°C. Somatosensory
evoked potentials (SEPs) were measured (CA 1000,
Nicolet Instruments Corp.. Madison. Wis.) over the
right cerebral cortex with stimulation of the left
median nerve (stimulus 17-19 mA, duration 100
msee. L7 repetitions see ', bandpass filter 30-3000
Hz. average of 30 repetitions). Prior to ischemia,
baseline SEPs were obtained and the P1-NT ampli-
tudes averaged: SEP recovery s expressed as a
rereetagc of iy basclioe winptitade. An 18-gauge
spinal needle was placed percutancously in the cis-
terna magna to monitor intracranial pressure and
infuse Elliott’s B solution. a mock ccrebrospinal fluid
(CSF) solution.

The allopurinol-treated dogs were randomly se-
lected and received 300 mg allopurinol (Zyloprim.,
Burroughs Wellcome Co., Rescarch Triangle Park,
N.C.} orally twice per day for 4 days preceding the
experiment. On the day of the investigation. an
additional 50 mg kg was given intravenously. The
control dogs received the vehicle (normal saline, pH
11.2) intravenously. Animals were subiected to 15
minutes of cerebral ischemia by elevating the intra-
cranial pressure to cqual the mean arterial pressure
with the infusion of warmed (38°C) Elliott’s B solu-
tion. Proper placement of the spinal needle in the
cisternal magna was verified by an unmeasurable
SEP during ischemia. In previous experiments with
this model. ["Cliodcantipyrine was uscd to confirm
the complete absence of cerebral blood flow during
ischemia.”” To combat the systemic hypertension
that occurs with intracranial hypertension, aliquots of
blood were withdrawn and 2.5-10 mg i.v. phentol-
amine was administered as necessary. Reperfusion
was initiated by allowing CSF to drain until the
intracranial pressure was <20 mm Hg. A cerebral
perfusion pressure of at least 60 mm Hg was main-
tained during reperfusion by infusing previously with-
drawn blood. administering fluids, and/cr irnfusing
norepinephrine. At the conclusion of the 4-hour
reperfusion period, the brains were rapidly removed
and frozen in ligquid nitrogen tor assays of the amount
of free malondialdehyde, the water content, and the
XO and XD+ X0 activitics. Gray and white matter
water contents were determined by drying at 110°C to
constant weight.

Free malondialdehyde. an index of lipid peroxida-
tion, was measured in the vight parictal cerebral
cortex by the wcaes ! Y Uhsicibaaer ot all"! Tissue
was homogemzed on ice in 0.1 M Tris buffer (pH
7.40). An aqueous solution was prepared by precip-
itation with acctonitrile followed by centrifugation at
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3C Malondialdehyde in the solution was separated
by a high-performance liquid chromatograph
cquipped with a carbohydrate analysis column (Wa-
ters Chromatography Division. Millipore Corp., Mil-
ford, Mass.) and a 270 nm ultraviolet detector. A
standard malondialdehyde solution was made by
hvdrolyzing malonaldehyde-bis(diethylacetal) (Ald-
rich Chemical Co., Milwaukee, Wisc.) in 1€¢ sulfuric
acid. The malondialdehyde coneentration in the stan-
dard solution was confirmed by measuring the ultra-
violet absorbance at 245 nm (e=13.700). The amount
of malondialdchyde in the sample was caleulated by
comparing the peak height of the sumple with that of
the standard solution.

The XO and XD+ XO activitics were determined
by a modification of the method of Mousson et al.i?
Brain tissue was homogenized and centrifuged. and
the supernatant was removed. The supernatant was
not passed through a column to remove endogenous
inhibitors since this also removes the administered
allopurinol. Aliquots were incubated at 37°C with
8-{"*Clhypoxanthinc (ICN Biomedicals, Inc.. Costa
Mesa, Calif.} in the presence (XD+XO activity) or
absence (XO activity) of oxidized nicotinamide ade-
nine dinucleotide. At the conclusion of the 1-hour
incubatio:, the reaction was terminated by the addi-
tion of 1.7 M perchloric acid. After centrifugation.
hypoxanthine was separated from xanthine and uric
acid by thin-layer chromatography. Radioactivity was
determined by dircect counting, and enzyme activity
was calculated by the ratio of the radioactivity of
xanthine and uric acid to that of hypoxanthine plus
xanthine plus uric acid. The limit of detection of this
assay i1s (0.3 nmol xanthine and uric acid/min/g protein
for both XO and XD+ XO.

We used both parametric and nonparametric
methods of statistical analysis. Wilcoxon's rank sum
test was used for between-group comparisons. Re-
peated-measures analysis of variance was used to test
the effects of trcatment over the time course of the
experiment. Data are presented as mean=SDD:
p<0.05 was considered significant.

Results

A total of 16 experiments were performed. Two
cxperiments were terminated prematurely. In onc.
the dog dicd during reperfusion and in the other,
there was difficulty placing the spinal needle in the
cisterna magna. One control animal underwent 240
minutes of reperfusion, but due to technical diffi-
culties, the last measurements were obtained at 210
minutes of reperfusion. Thus, seven dogs were
studied in cach group. but physiological data at 225
and 240) minutes in the control group represent six
experiments.

olected paysiaiogical variables are listed in Table
1. Group measurements were compared before and
after ischemia and at 60, 120, 180, and 240 minutes of
reperfusion. Data are similar in the two groups
except tor a lower CSE pressure and a lower Paco, in
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TasLe 1. Selected Physiological Variables in Dogs Subjected to Global Cerebral Ischemia

Baseline

End ischemia End reperfusion

Variable Control Allopurinol Control Altopurinol Control Allopurinol
Mean blood pressure (mm Hg) 131=11 125+147 135+38 114442 135+42 138+20
Cerebrospinal uid pressure (mm Hg)* 6+ 3 3+ 1t+6 8§+3 12+3 8+3
Cerebral perfusion pressure (mm Hg) 125+ 11 120217 142+37 16+ 32 12650 130+ 20
Temperature (1C) IS652045 3880050 IR.66=0.45 38.70+0.25 3RT1=0.48 39.17+0.23
Hematocrit (7¢) 42+4 45+4 417 443 47+4 47+4
pH 7.40=0.06 741003 7.35+0.07 7.3520.05 7.40%0.05 7.40£0.03
Pao. (mm Hg) Yl+6 92+7 84+9 875 90 10 Yl=11
Paco, (mm Hg)* KRR 32+3 3¥x3 Joxs 352 31=4

Data are mean=8D, n=7 in cach group (except n=6 in control group at end reperfusion).
*p<0.05 different from control by repeated measures analysis of vanance.

the allopurinol group. Mean cerebral perfusion pres-
sure at the end of ischemia in the allopurinol group
was lower than, but not significantly different from.
that in the control group. Peak mean arterial pres-
sure was similar (p>0.05) in the two groups (237+36
mm Hg in the allopurinol group versus 25143
mm Hg in the control group). The cerebral perfusion
pressure was at least 60 mm Hg in all dogs.

The time from sacrifice of the dog to placement of
the brain in liquid nitrogen did not differ significantly
between groups. These times were 4.7+0.37 minutes
tor the allopurinol group and 5.320.47 minutes for
the control group.

Reproducibility of the SEPs was excellent. The
coefficient of variation for the baseline SEPs aver-
aged 3.9% in the allopurinol group and 3.2% in the
control group. Recovery of SEP during the 240
minutes of reperfusion is shown in Figure 1. Allopu-
rinol-treated dogs had significantly greater recovery
of SEP than the untreated controls. Final recovery
was 17.3%13.7% in the allopurinol group compared
with 5.4%5.5% in the control group ( p<0.05).

The amount of free malondialdehyde measured at
the end of reperfusion was higher (p<0.01) in the
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FIGURE 1. Graph [mean=S8D] of percent recovery of base-

line somatosensory evoked potential (SEP) during 4 hours of

reperfusion in dogs. Recovery in the allopurinol group (broken
line) is significantly greater (p<0.05) than that in the control
aoup (solid line)

allopurinol group than in the control group (Figure
2). Cerebral gray and white matter water contents
werc similar in the two groups (Figure 3).

Brain XO and XD+ XO activitics were undetect-
able in all allopurinol-treated dogs. In the control
group. these activities were 3.38%=1.60 nmol xan-
thine and uric acid/min/g protein for XO and
4.71x2.69 nmol xanthine and uric acid/min/g pro-
tein for XD+XO.

Discussion

A pathological role for XO in ischemia/reperfusion
injury was first suggested by Granger et al.* They
proposed that XD was irreversibly converted to XO
during ischemia. Then, when oxygen became avail-
able during reperfusion, superoxide radicals were
generated by XO as the accumulated hypoxanthine
was oxidized to xanthine and uric acid. We have

1200
3 x
°
2 900}
£
o
.
[/}
o
g 600
E
€
9
s L
S 300
<
Q
p
0

Control Allopurinol

FIGURE 2. Bar graph [mean=SD] of free malondialdehyde
(MDA) content in cortical brain tissue of dogs in the allopu-
rinol and control groups after 15 minutes of ischemia followed
by 4 hours of reperfusion. *p<0.01 different from control by
Wilcoxon's rank sum test.
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FIGURE 3. Bar gruph [mean=SD] of brain gray and white
matter water contents of dogs in the allopurinol (hatched bars)
and control (solid bars) groups.

rccently shown that irreversible conversion of XD to
XO does not occur in cerebral ischemia/reperfusion
injury.” However, a role for XO in brain injury cannot
be excluded. Reversible conversion of XD to XO has
been demonstrated in some tissues during ischemia,
and this XO is a potential source of free radicals
during reperfusion.”.!* In addition, XO accounts for
20 of the total XD+XO activity in the uninjured
dog brain.” Since cerebral XO is found principally in
the endothelium,? even a small amount of the oxidase
may cause tissue injury by damaging the blood-brain
barrier.

Pretreatment of dogs with allopurinol improved
SEP recovery after 4 hours of reperfusion. Recovery
was associaied with inhibition of both XO and XD
activities. The Paco, in the allopurinol group was
slightly lower than that in the control group, but this
difference was small and probably not of physiologic
significance. Mean cerebral perfusion pressure at the
end of ischemia in the allopurinol-treated dogs was
lower than, but not significantly different from, that
in the controls. Even so, both a lower Paco, and a
lower cerebral perfusion pressure would decrease
cerebral blood flow' and likely inhibit the recovery
of SEP in the allopurinol group. Although rectal, and
not brain, temperature was measured, care was taken
to avoid brain cooling by warming the Elliott’s B
solution to 38°C prior to infusion. Furthermore,
unlike in small mammals, a significant effort is
nceded 001 the dog brain by even 1°C.1516 In
investigations in which the dog brain was selectively
copled, rectal temnerature aiso decreased e We
did not observe such a decrease in cither group.

We used the SEP amplitude in our study since it has
been suggested that this measurement correlates bet-
ter with cortical ischemia than do changes in laten-
cy.!'” The SEP amplitude also has been observed to
paraliel changes in brain oxygen utilization. !
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Allopurinol pretreatment has been shown to re-
duce tissue injury after ischemia/reperfusion in the
heart, intestine, and liver.2¢-2 Troh et al®® examined
the effect of allopurinol on cerebral recovery after 4
hours of bilateral common carotid artery occlusion in
spontancously hypertensive rats. Rats pretreated
with the drug had a significantly lower mortality and
a better neurological outcome at 72 hours than
untreated animals.?® In a rat model of continuous
partial ischemia, allopurinol ieduced brain infarction
at 3 and 24 hours.”* However, in a gerbil model
employing unilateral carotid artery ligation, allopuri-
nol pretreatmcnt improved ouicorue only at 2-4
hours, not at 24 hours.® These studies did not
examine the mechanism by which allopurinol was
protective.

We used high-performance liquid chromatography
to measure the malondialdehyde content because the
more conventional assay, the thiobarbituric acid test,
gives artifactually high levels of “malondialdehyde™
by measuring non-malondialdehyde species.2*27 Qur
finding of an increased brain malondialdehvde con-
tent in the allopurinoi-treated dogs was unexpected.
This result was not due to a dilutional effect since
brain water content was similar in the two groups. In
addition, allopurinol has not been reported to in-
crease lipid peroxidation in any in vitro or in vivo
system. Since this assay measures the amount of
non-tissue-bound malondialdehyde, allopurinol
could have altered the binding of malondialdehyde,
increasing the free amount without altering the total
amount. Vitamin E deficiency has been shown to
alter the proportion of free malondialdehyde in rat
liver, with the pcrcentage of unbound malondialde-
hyde increasing from 8% to 60% when rats are fed a
vitamin E—deficient diet.?” Another possibility is that
allopurinol inhibited the metabolism of malondialde-
hyde. Experiments using liver and kidney demon-
strate that malondialdehyde is first oxidized to malo-
nic semialdehyde, and then decarboxylated to form
acetaldehyde. Acetaldehyde is oxidized to acetate
predominantly by aldehyde dehydrogenase.?8.29 How-
ever, acetaldehyde also can be oxidized by XO.%
Inhibiting XO with allopurinol may have led to
higher in vivo malondialdehyde levels by altering
acetaldehyde elimination. Malondialdehyde may also
be produced when prostaglandins are synthesized
since arachidonic acid metabolism is associated with
free radical intermediates.*! If allopurinol protected
cells so that arachidonic acid metabolism continued,
SEP recovery would then be associatcd with an
increase in brain malondialdehyde content.

In addition to inhibiting the formation of free
radicals, other mechanisms have heen proposed
nccount tor the protective effect of anopurinol.
During ischemia, energy stores are depleted as
adenosine triphosphate is degraded to the purines
inosine and hypoxanthine. Hypoxanthine can be
further metabolized to xanthinc and uric acid by
XD or XO. Upon reperfusion, the cnergy state is
restored by either de novo synthesis of purine bases
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or by reutilization of inosine and  hypoxanthine
through salvage pathways. The latter method is
significanty more energyv-ctlicient. One mechanism
by which allopurinol may be protective in ischemia/
reperfusion injury is by inhibiting XD and XO,
preventing the metabolism of hypoxanthine to the
nonsalvageable xanthine and uric acid, and thereby
limiting loss of the purine bases. This leads 1o
greater salvage of hypoxanthine, improved restora-
tion of the encrgy stat~, and better recovery. =332 A
role for allopurinol as a direct fice radical scaven-
ger has also been proposed. i atthough one inves-
tigation discounts this mechanism. ™ Allopurinol
has also been shown to have vasodilatory cffects
that could promote blood flow to previously isch-
¢mic areas.

Our study provides evidence for the participation
of XO in cerebral ischemia/reperfusion injury. Doc-
umented inhibition of XO and XD by allopurinol was
assoctated with improved neurophysiological brain
recovery. Rather than presume a mechanism by
which allopurinol was protective, we attempted to
correlate improved recovery with an index of free
radical damage, lipid peroxidation. Our data suggest
that the detrimental effects of XO are not due to the
generation of free radicals. although interpretation
of the malondialdchyde results is complicated by an

unpredicted eftect of allopurinol on measurement of

malondialdehyde. Since the presence of XD and XO
in the human brain has been confirmed,?” further
study of the improved cerebral recovery with allopu-
rinol is warranted. These studies should incorporate
an evaluation of the mechanism by which allopurinol
is protective in their design.
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